Journal of Organometallic Chemistry, 312 (1986) C24-C26 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

KINETICS OF NUCLEOPHILIC ATTACK UPON COORDINATED ORGANIC MOIETIES.

XXIII *. ATTACK BY CYCLOHEXYLAMINE UPON THE DIENE LIGANDS IN [MX₂(1,5-cyclooctadiene)] (M = Pd, Pt; X = Cl, Br) COMPLEXES

D.J. EVANS and L.A.P. KANE-MAGUIRE **

Department of Chemistry, University of Wollongong, Wollongong, N.S.W. 2500 (Australia) (Received April 25th, 1986)

Summary

Kinetic and spectroscopic studies of the reactions of cyclohexylamine with the complexes $[MX_2(1,5-cyclooctadiene)]$ (I) (M = Pd; X = Cl, Br; M = Pt, X = Br) in acetone reveal the rate law, $k_{obs} = K_1 k_2 [amine]^2$, for the rapid sequence

$$I + RNH_2 \stackrel{k_1}{\rightleftharpoons} [MX_2(RNH_2 \cdot diene)] \stackrel{k_2}{\longrightarrow} [MX_2(RNH \cdot diene)] + RNH_3^+$$
(III)

For X = Br, the palladium(II) complex is ca. 70 times more reactive than its platinum(II) analogue. This is the first quantitative comparison reported to date for nucleophilic attack upon olefins coordinated to Pd^{II} and Pt^{II} centres. The reactivity order Pd^{II} \gg Pt^{II} may arise from the higher ionization potential of Pd²⁺ compared to Pt²⁺, which makes Pd^{II} a less effective back- π -bonder. Replacing the bromo ligands in [PdBr₂(1,5-COD)] by chloro ligands lowers the rate of formation of III by a factor of 8.

The relative abilities of various transition metal centres to activate coordinated π -hydrocarbons towards nucleophilic attack (eq. 1) is a matter of considerable fundamental and industrial significance. In previous papers [1–4], we have explored

$$RML_n + Nuc \rightarrow (RNuc)ML_n$$

this aspect via kinetic studies of type 1 reactions in which the metal is varied down a triad while R, L and Nuc are kept constant. Little dependence of rate on the nature

(1)

^{*} For part XXII see ref. 8.

^{**} Author to whom correspondence to be addressed.

SCHEME 1

of the metal was noted for the chromium [1,2] and manganese [1,3] triads. In contrast, the iron triad metals showed large variations in their ability to activate π -hydrocarbons. For example, for attack by N, N-dimethylaniline on [M(CO)₃(1-5- η -C₆H₇)]⁺ cations, the rate sequence Fe > Os > Ru (41/3.6/1) was observed [4]. We report here kinetic data for the reactions of the compexes [MX₂(1,5-cyclooctadiene)] (I), (M = Pd, Pt; X = Cl, Br) with cyclohexylamine, which provide the first quantitative comparison of nucleophilic attack on olefins coordinated to palladium(II) and platinum(II) centres.

The complexes undergo rapid reactions with cyclohexylamine in acetone at 0°C, which could be monitored by visible stopped-flow spectrophotometry utilizing the decrease in absorbance in the region 350-420 nm (except for the M = Pt, X = Cl complex where spectral changes occurred in the UV region). In keeping with earlier studies on related systems [5,6], the sequence shown in Scheme 1 can be assumed, involving reversible formation of the zwitterion II followed by amine-assisted deprotonation to give product III.

The intermediates II (M = Pd, Pt; X-Cl) were isolated by treating $[MCl_2(1,5-cyclooctadiene]$ (M = Pd, Pt) with an equimolar amount of cyclohexylamine in acetone. The ν (N⁺-H) and δ (N-H) bands observed for species II at 3420-3460 and 1580-1585 cm⁻¹, respectively, are similar to those reported [6] for the analogous complex formed from the reaction of $[PdCl_2(1,5-hexadiene)]$ with benzylamine. Monomeric structures for II were also confirmed by the absence of bridging ν (M-Cl) bands.

Kinetic data at 0°C for the reactions $I \rightarrow III$ over a wide range of cyclohexylamine concentrations reveal the general rate law 2. This rate law is consistent with

Rate = k_{obs} [complex]

 $k_{obs} = k [amine]^2$

(2)

TABLE 1

RELATIVE REACTIVITIES OF $[\rm MX_2(1,5-cyclooctadiene)]$ COMPLEXES TOWARDS CYCLOHE-XYLAMINE IN ACETONE AT 0 $^\circ \rm C$

Complex	$K_1k_2 \;(\mathrm{mol}^{-2} \mathrm{dm}^6 \mathrm{s}^{-1})$	Rel. k	
[PtBr ₂ (1,5-COD)]	2.68×10 ⁴	1	
[PdBr ₂ (1,5-COD)]	1.94×10 ⁶	72	
[PdCl ₂ (1,5-COD)]	2.39×10^{5}	9	

the mechanism shown in Scheme 1. Assuming a steady-state concentration for intermediate II, k_{obs} for such a process is given by eq. 3. This simplies to expression 4, in keeping with the observed kinetics, provided $k_{-1} \gg k_2$ [amine].

$$k_{\rm obs} = \frac{k_1 k_2 [amine]^2}{k_{-1} + k_2 [amine]}$$
(3)

$$k_{\rm obs} = K_1 k_2 [\rm{amine}]^2 \tag{4}$$

Values of K_1k_2 calculated for reactions I \rightarrow III are summarised in Table 1. Direct comparison of the second-order rate constants (k_1) for addition of cyclohexylamine to the diene ligands in complexes I are not possible. However, comparison of the K_1k_2 values shows that the overall reactivity of 1,5-cyclooctadiene coordinated to palladium(II) is ca. 70 times greater than when coordinated to platinum(II). This is the first time that such a reactivity ratio has been determined. It is consistent with the higher ionization potential of Pd²⁺ compared to Pt²⁺, suggesting that palladium(II) is a less effective π -back-bonder [7], thus facilitating nucleophilic attack at a coordinated olefin.

Changing the nature of the other ligands attached to the central metal in I also influences the rate of formation of III. Thus, the bromo-palladium substrate is ca. 8 times as reactive as the analogous chloro complex (Table 1).

Each of the above reactions $I \rightarrow III$ were followed by slower processes, as expected from earlier observations [5] on related systems. These subsequent processes were generally slow enough to follow by conventional spectroscopic techniques, and will be the subject of a subsequent communication.

Acknowledgements. The Autralian Research Grants Commission is thanked for support.

References

- 1 L.A.P. Kane-Maguire, E.D. Honig and D.A. Sweigart, Chem. Revs., 84 (1984) 525, and refs. cited therein.
- 2 G.R. John, L.A.P. Kane-Maguire and D.A. Sweigart, J. Organomet. Chem., 120 (1976) C47.
- 3 L.A.P. Kane-Maguire and D.A. Sweigart, Inorg. Chem., 18 (1979) 700.
- 4 G.R. John and L.A.P. Kane-Maguire, J. Chem. Soc., Dalton Trans., (1979) 1196.
- 5 R. Palumbo, A. De Renzi, A. Panunzi and G. Paiaro, J. Am. Chem. Soc., 91 (1969) 3874.
- 6 C. Agami, J. Levisalles and F. Rose-Munch, J. Organomet. Chem., 65 (1974) 401.
- 7 F.R. Hartley, The Chemistry of Palladium and Platinum, Wiley, New York, 1973; Chapter 13.
- 8 D.J. Evans and L.A.P. Kane-Maguire, Inorg. Chim. Acta, 62 (1982) 109.